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a b s t r a c t

The present study is devoted to propose a hybrid Green’s function method to investigate the hyperbolic
heat conduction problems. The difficulty of the numerical solutions of hyperbolic heat conduction prob-
lems is the numerical oscillation in the vicinity of sharp discontinuities. In the present study, we have
developed a hybrid method combined the Laplace transform, Green’s function and e-algorithm accelera-
tion method for solving time dependent hyperbolic heat conduction equation. From one- to three-dimen-
sional problems, six different examples have been analyzed by the present method. It is found from these
examples that the present method is in agreement with the Tsai-tse Kao’s solutions [Tsai-tse Kao, Non-
Fourier heat conduction in thin surface layers, J. Heat Transfer 99 (1977) 343–345] and does not exhibit
numerical oscillations at the wave front. The propagation of the two- and three-dimensional thermal
wave becomes so complicated because it occur jump discontinuities, reflections and interactions in these
numerical results of the problem and it is difficult to find the analytical solutions or the result of other
study to compare with the solutions of the present method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, study of the hyperbolic heat conduction has
received considerable interest, because of it wide applicability
in engineering applications, such as laser-aided material process-
ing, cryogenic engineering, the high-intensity electromagnetic
irradiation of a solid and the high-rate heat transfer in rarefied
media. The solutions of the hyperbolic heat conduction can be
found in a number of publications such as Tsai-tse Kaov [1]
studied the HHC in thin surface layers obtained an analytical
solution. Baumeister and Hamill [2], Taitel [3], Ozisik and Vick
[4], and Wu [5] obtained an analytical solution of one-dimen-
sional HHC, for a semi-infinite medium or in a finite medium
with convection, or radiation at the wall surface. Carey and Tai
[6] applied the central and backward difference schemes to
examine the oscillation of numerical solution at the reflected
boundary. To remedy the numerical difficulty encountered, many
numerical schemes have been proposed such as the predictor–
corrector scheme [7], the transfinite element formulation [8],
and a technique based on the Galerkin finite element and mixed
implicit–explicit scheme [9], the characteristic method [10], and
the hybrid scheme [11]. The effect of the surface radiation on
thermal wave propagation in a one-dimensional slab has been
studied by Glass et al. [12] and Yeung and Tung [13] and two-
dimensional solutions are given by Yang [14], Chen and Lin
[15] and Shen [16]. The problem of the HHC in thin surface lay-
ll rights reserved.
ers has been investigated by Chen [17]. Loh et al. [18] investi-
gated the problems of the fast transient Fourier and Non-
Fourier heat conduction problems.

The purpose of the present study is to propose a hybrid
method investigating the hyperbolic heat conduction problem.
The present method combine the Laplace transform, Green’s
function and the e-algorithm acceleration method for solving
time dependent hyperbolic heat conduction equation. The La-
place transfer method is used to remove the time-dependent
terms from the governing equation, and then the s-domain
dimensionless temperature function is obtained by the Green’s
function scheme. Finally, the time-domain dimensionless tem-
perature can be determined by the numerical inversion of the
Laplace transform and the e-algorithm acceleration method. It
is found that the present method is in agreement with the ana-
lytical solutions [1] and does not exhibit numerical oscillations
at the wave front.
2. Analysis

Consider the problems of hyperbolic heat conduction. The
three-dimensional hyperbolic heat conduction equation is given by
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For convenience of numerical analysis, let us define by the fol-
lowing dimensionless variables
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Nomenclature

Bi Biot number, hl
k

C propagation velocity of thermal wave
cp specific heat
fr reference heat flux
G Green’s function
h thermal convection coefficient
k thermal conductivity
n outward-drawn normal vector to the boundary surface
n
_

dimensionless outward-drawn normal vector to the
boundary surface

q heat flux
Q dimensionless heat flux, q

fr

Si boundary surface
s Laplace transform parameter
sum summation of a series of function
T temperature

T0 surrounding temperature
x, y, z coordinators

Greek letters
a thermal diffusivity, k

qcp

g dimensionless length, Cx
2a

h dimensionless temperature, ðT�T0Þkc
afr

q density
e e-algorithm parameter
1 dimensionless length, Cz

2a
n dimensionless time, C2t

2a
f dimensionless length, Cy

2a

Superscript
– The Laplace transform

4274 T.-M. Chen / International Journal of Heat and Mass Transfer 52 (2009) 4273–4278
n ¼ C2t
2a

ð2Þ

g ¼ Cx
2a

f ¼ Cy
2a

1 ¼ Cz
2a

ð3Þ

hðg; nÞ ¼ kCðT � T0Þ
afr

ð4Þ

Qðg; nÞ ¼ q
fr

ð5Þ

The resulting equation becomes
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And boundary condition oh
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_

i on Si

3. Numerical scheme

In all illustrative examples of this study, the dimensionless ini-
tial conditions are given as

hðg; f; 1;0Þ ¼ 0; and
oh
on
ðg; f; 1; 0Þ ¼ 0 ð7Þ

To remove the n-dependent terms, taking the Laplace transform of
Eq. (6) with respect to n gives

o2�h
og2 þ
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o12 � ðs

2 þ 2sÞ�h ¼ 0 ð8Þ

And boundary condition o�h

o n
_þ Bi�h ¼

�
f
_

i on Si

To solve the above s-domain heat conduction problem we con-
sider the following auxiliary problem for the same region

o2G
og2 þ

o2G

of2 þ
o2G
o12 þ dðr � r0Þ � ðs2 þ 2sÞG ¼ 0 ð9Þ

oG

o n
_þ BiG ¼ 0; on Si

The Green’s function Gðr; sjr0; sÞ is determined from Eq. (9) by
the method of separating variables [19], and we obtain the s-do-
main solution �hðr; sÞ of the heat conduction problem, Eq. (8) in
terms of the Green’s function Gðr; sjr0; sÞ as

�hðr; sÞ ¼
XS

i¼1

Z
Si

Gðr; sjr0; sÞjr0¼ri

�
f
_

ðr; sÞdSi ð10Þ

where Si refers to the boundary surface Si of the region R, i = 1, 2, 3,
. . . S and S in number continuous boundary surfaces.
The dimensionless temperature h(r, n) can be determined by the
numerical inversion of the Laplace transform and the e-algorithm
acceleration method.

For a non-monotonous fNðtÞ ¼
PN

k¼1uk, the e-algorithm acceler-
ation convergence method is expressed as

Let N = 2q + 1, q e N,

summ ¼
XN

k¼1

uk ð11Þ

And eðmÞpþ1 ¼ eðmþ1Þ
p�1 þ 1

eðmþ1Þ
p � eðmÞp

� � ; eðmÞ0 ¼ 0; eðmÞ1 ¼ summ ð12Þ

Then the sequence eð1Þ1 ; eð1Þ3 ; eð1Þ5 ; . . . ; eð1Þ2qþ1 ¼ eð1ÞN , converges to f1(t)

4. Results and discussion

Example 1. One-dimensional problem prescribed wall tempera-
ture. The initial and boundary conditions for this case are given by

hðg;0Þ ¼ 0;
oh
on
ðg; 0Þ ¼ 0 ð13Þ

hð0; nÞ ¼ 1; hðg!1; nÞ ¼ 0 ð14Þ

The h(g, s) is obtained as
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X1
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2np
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sinðnpgÞ ð15Þ

The Tsai-tse Kao’s solution [1] of this example is expressed as
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Table 1 lists the comparison of the present method solutions
and analytical solutions for the problem at n = 0.5 and n = 0.8.
From Table 1, it is seen that the present method solutions
are in agreement with the analytical solution using the Eq.
(16).

Example 2. One-dimensional problem prescribed wall heat flux.
The initial and boundary conditions for this case are given by

hðg;0Þ ¼ 0;
ohðg;0Þ

on
¼ 0 ð17Þ

Qð0; nÞ ¼ 1; Qðg!1; nÞ ¼ 0 Qðg;0Þ ¼ 0 ð18Þ



Fig. 2. The effect of the one-dimensional problem on hyperbolic heat conduction at
n = 0.25, n = 0.5, n = 1.25, and n = 1.5.

Table 1
Comparison of the present method and analytical solution resulting from a prescribed
wall temperature.

Present method Analytic solution Eq. (16) e = 0

x n = 0.5 n = 0.8 n = 0.5 n = 0.8

0.0 1.000000 1.000000 1.000000 1.000000
0.1 0.919904 0.928205 0.919913 0.928184
0.2 0.840201 0.856537 0.840177 0.856657
0.3 0.761172 0.785696 0.761140 0.785709
0.4 0.683119 0.715850 0.683146 0.715623
0.5 0.303307 0.646677 0.303265 0.646676
0.6 0.000029 0.579426 0.000000 0.579140
0.7 0.000008 0.513275 0.000000 0.513275
0.8 0.000026 0.224633 0.000000 0.224664
0.9 0.000060 0.000564 0.000000 0.000000
1.0 0.000000 0.000000 0.000000 0.000000
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The boundary condition for the Laplace transform of the dimen-
sionless temperature at surface g = 0 can be obtained

d�h
dg
ð0; sÞ ¼ � sþ 2

s
ð19Þ

The h(g, s) is obtained as

�hðg; sÞ ¼
X1
n¼1

2ðsþ 2Þ

s ð2n�1Þp
2

� �2
þ s2 þ 2s

� 	 cos
ð2n� 1Þp

2
g

� �
ð20Þ

Fig. 1 represents the influence of the one-dimensional problem
on hyperbolic heat conduction with a prescribed wall heat flux at
n = 0.125, n = 0.25, n = 0.5, and n = 0.75. It can be seen that the pres-
ent method solutions do not exhibit numerical oscillations at the
wave front.

Example 3. One-dimensional problem prescribed in a finite slab.
The initial and boundary conditions for this case are given by

hðg; 0Þ ¼ 0;
oh
on
ðg;0Þ ¼ 0 ð21Þ

hð0; nÞ ¼ 1;
oh
og
ð1; nÞ ¼ 0 ð22Þ

The h(g, s) is obtained as
Fig. 1. The influence of the one-dimensional problem on hyperbolic heat conduc-
tion with a prescribed wall heat flux at n = 0.125, n = 0.25, n = 0.5, and n = 0.75.
�hðg; sÞ ¼
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2ðn� 1Þp
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2
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þ s2 þ 2s

� 	 sin
ð2n� 1Þp

2
g

� �
ð23Þ

Fig. 2 illustrates the effect of the one-dimensional problem on
hyperbolic heat conduction at n = 0.25, n = 0.5, n = 1.25, and
n = 1.5 that the thermal wave occur jump discontinuities, reflec-
tions and interactions in this problem.

Example 4. Two-dimensional problem prescribed wall
temperature. The initial and boundary conditions for this case
are given by
hðg; f;0Þ ¼ 0;
ohðg; f;0Þ

on
¼ 0 ð24Þ

hð0; f; nÞ ¼ 1; hð1; f; nÞ ¼ 0 ð25Þ
hðg;0; nÞ ¼ 1; hðg;1; nÞ ¼ 0 ð26Þ

The h(g, f, s) is obtained as

�hðg; f; sÞ ¼
X1
n¼1

X1
m¼1

4½1� ð�1Þm�n
ms½ðnpÞ2 þ ðmpÞ2 þ s2 þ 2s�
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m¼1

4½1� ð�1Þn�m
ns½ðnpÞ2 þ ðmpÞ2 þ s2 þ 2s�

� sinðnpgÞ sinðmpfÞ
ð27Þ

Fig. 3 shows the three-dimensional sketch of dimensionless
temperature for (a) n = 0.25, (b) n = 0.5, and (c) n = 0.75 that the
g- and f-direction thermal wave interact before the jump
discontinuities.

Example 5. Two-dimensional problem prescribed in a plate. The
initial and boundary conditions for this case are given by
hðg; f;0Þ ¼ 0;
ohðg; f;0Þ

on
¼ 0 ð28Þ

hð0; f; nÞ ¼ 1;
ohð1; f; nÞ

og
¼ 0 ð29Þ

hðg;0; nÞ ¼ 1;
ohðg;1; nÞ

of
¼ 0 ð30Þ

The h(g, f, s) is obtained as



Fig. 3. The three-dimensional sketch of dimensionless temperature for (a) n = 0.25, (b) n = 0.5, and (c) n = 0.75.
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Fig. 4 shows the three-dimensional sketch of dimensionless
temperature for (a) n = 0.5, (b) n = 0.75, (c) n = 1.2, and (d) n = 1.5
that the g- and f-direction thermal wave interact before the jump
discontinuities and after reflections.

Example 6. Three-dimensional problem prescribed in cubic
solid. The initial and boundary conditions for this case are gi-
ven by

hðg; f; 1;0Þ ¼ 0;
ohðg; f; 1;0Þ

on
¼ 0 ð32Þ

hð0; f; 1; nÞ ¼ 1;
ohð1; f; 1; nÞ

og
¼ 0 ð33Þ

hðg; 0; 1; nÞ ¼ 1;
ohðg;1; 1; nÞ

of
¼ 0 ð34Þ

hðg; f;0; nÞ ¼ 1;
ohðg; f;1; nÞ

@1
¼ 0 ð35Þ

The h(g, f, 1, s) is obtained as
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Fig. 5 shows the three-dimensional sketch of dimensionless
temperature for n = 0.5 (a) 1 = 0.75, and (b) 1 = 0.25 that the g-, f-
and 1-direction thermal waves interact before the jump discontinu-
ities. For (a) 1 = 0.75 is after 1-direction thermal waves jump dis-
continuity (1 = 0.5), so it is same as the 2-D problem example 5
Fig. 4(a).

5. Conclusions

The hybrid method has shown success in solving the hyperbolic
heat conduction problem. To illustrate the accuracy and efficiency
of the method, from one- to three-dimensional problems, six dif-
ferent examples have been analyzed. It is found from these exam-
ples that the present method is in agreement with the analytical
solutions [1] and does not exhibit numerical oscillations at the



Fig. 4. The three-dimensional sketch of dimensionless temperature for (a) n = 0. 5, (b) n = 0.75, (c) n = 1.2, and (d) n = 1.5.

Fig. 5. The three-dimensional sketch of dimensionless temperature for n = 0.5 (a) 1 = 0.75 and (b) 1 = 0.25.
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wave front and the propagation of the two- and three-dimensional
thermal wave becomes so complicated because it occur jump dis-
continuities, reflections and interactions in these numerical results
of the hyperbolic heat conduction problems.
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